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Two Questions Addressed Today

@® When does the WKB method lead to solutions of (%) with good asymptotics as i — 0?
® What is the WKB method for P and V?
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® “Generically” := away from turning points := zeros of the discriminant of (#)
® ) is very computable but almost always divergent!
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Q: Can ¢); be upgraded to a holomorphic solution 1;?
i.e.: is ¢; the asymptotic/perturbative expansion as 4 — 0 of a holomorphic ;?

A: Yes! [Asymptotic Existence Theorem]
BUT: such 1); is highly non-unique and not constructive

BETTER Q: Can 1; be upgraded to a holomorphic solution ¢; in a canonical way?

ie.: is @E Borel-summable to a holomorphic solution );?

A: Yes! But highly sensitive to the semi-global geometry determined by Ay,..., A\,

Main Results [N] (rough statement)

® Formal WKB solutions @1, ... ,{p\n are Borel-summable away from relevant Stokes lines.

® Their Borel resummations 1, . .., ), are uniquely determined by an asymptotic
condition, and therefore have an invariant geometric meaning for a differential
operator P on a line bundle £ over (X, D).

© Geometrically, the WKB method is a method to search for an invariant splitting of an
oper structure on (&£, V), so exact WKB solutions make sense for connections.
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§2.1. WKB Trajectories and Stokes Lines

e WKB trajectory of type ij emanating from x is locally given by

Tii(z0) Im</$()\i)\j)dz>:() and Re(/:()\i)\j)dx)20

xo 0

Ty

Xo
()
Natural flow time parameter: ¢(x) := / (A — Aj) dz
x0

t

o TG
//_>—;M\ 3

%o

I';j(x0) is nonsingular if it is infinitely long and encounters no turning points
I';j(xo) is singular if it flows into a turning point
U0 P turning,

/ ponb

Ko XD



§2.1. WKB Trajectories and Stokes Lines

® A Stokes line of type ij on X is a maximal singular WKB trajectory of type ij
e Stokes ‘graph’ or network := collection of all Stokes lines on X
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* WKB trajectories of type ij are leaves of R -foliation of the differential (\; — \;) dz
e The characteristic equation A" + a1 A" ! + .- + a,, = 0 (#) is a spectral curve:
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e )\; dx is the local expression for \ on sheet i of
® Lemma: ()\; — \;) dz are local expressions for adjoint canonical differential ad A on

adL =Y xY 25 ¥
" X . . adjoint
) ml : Jw ad A :=mjA — 7y spectral
>

X<——M

\T curve

- . — X

turning points := ramification locus of ad 7 : ad ¥ — X

WKB trajectories := leaves of R, -foliation of ad A on ad &

Stokes lines := maximal singular WKB trajectories on ad &

Stokes graph := collection of all Stokes lines on ad &

e Stokes network on X is the projection of the Stokes graph under ad 7 : ad ¥ — X
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Fix z¢ € X ordinary point := neither a turning point nor a pole

Definition (n = 2)
The WKB flow of x¢ of type i is nonsingular if the WKB trajectory I';;(z¢) is nonsingular.
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§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Definition (n > 3)

The WKB flow of x¢ of type i is nonsingular if

e each WKB trajectory I';1(z¢), I'ia(20), - - . , in(x0) is nonsingular

® Whenever I';;(z) intersects a singular trajectory of type ik, let ; € X be an
intersection point, and assume I'j;(21) encounters no turning points

® Repeat for I';;(x1)

e This process terminates at a finite number of iterations

r&k ()

X r.L ;‘(xo\

e Complete Stokes network := locus of all points on X with singular WKB flow
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Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix zg € X ordinary point and \; leading-order characteristic root near x.
Assume that the WKB flow of x of type 7 is nonsingular.
Then the formal WKB solution

Ui(z, h) = exp(ili /m Si(x, h) dx> S /\i/hzd)gk)(x)hk
r k=0

0
is uniformly Borel summable near x:
Yi(z,h) ==X [QZZ] (z,h) = el X/, (Z zbfk)(ﬂz)hk>
k=0

In fact, ¢; is the unique solution for x near xy which is asymptotically smooth with
factorial growth uniformly as 7 — 0 with Re(%) > 0 and uniformly in x, and satisfies

Gi(ro,h) =1 and  a@(v(x,h)) = Pi(z,h)  as h— 0 with Re(h) > 0

Corollary

Uniqueness yields a notion of exact WKB flat sections of £ for P on (X, D).
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Focus on the Riccati equation /70,5 + s% + p1s +ps =0

Lemma

The Borel transform of s; is uniformly convergent near xy:

oi(w,§) = B|Ai +Zs(“ ] D ms N (@)e" € Ox g {€}
k=1 k=0

Goal

Construct the analytic continuation o; of &; for all £ € R, and define

+o0
si(z, h) == X\ + £[o;] = Xi(z) + / e ¢/Mg;i(x,€) de
0
Y;(z, h):= exp(fli /x si(a', h) dx’)

Recall: uniform summability — E[exp(,li / sdx /h)} = exp(,li / % [s] da:)
x xo

0



§3.1. Proof Outline (n = 2)

To construct the analytic continuation o;, argue as follows.



§3.1. Proof Outline (n = 2)

To construct the analytic continuation o;, argue as follows.
@ Simplify by linearising the Riccati equation around \;:

Lets=\+S = hdyS+ (N —\))S =hAg+hAS - S?



§3.1. Proof Outline (n = 2)

To construct the analytic continuation o;, argue as follows.
@ Simplify by linearising the Riccati equation around \;:

Lets=\+S = hdyS+ (N —\))S =hAg+hAS - S?

@® Apply the Borel transform:
Leto =B[S] = 0,0+ (\i—\j)do=ap+a10+ o %0 — 850*2



§3.1. Proof Outline (n = 2)

To construct the analytic continuation o;, argue as follows.
@ Simplify by linearising the Riccati equation around \;:

Lets=\+S = hdyS+ (N —)\))S =hAg+hAS — 2

@® Apply the Borel transform:

Leto =B[S] = 0,0+ (\i—\j)do=ap+a10+ o %0 — 850*2
t

. . . L (%o
© Rewrite as an integral equation: ///?‘;m\njt )

3 Xo x(t)
o(xz,&) =ag— / (righthand side) dt where t = / Nij da
0 (:B (t),&— t) To




§3.1. Proof Outline (n = 2)

To construct the analytic continuation o;, argue as follows.
@ Simplify by linearising the Riccati equation around \;:

Lets=\+S = hdyS+ (N —\))S =hAg+hAS - S?

@® Apply the Borel transform:

Leto =B[S] = 0,0+ (\i—\j)do=ap+a10+ o %0 — 850*2
t

. . . L (%o
© Rewrite as an integral equation: ﬁﬂ\%t )

3 Xo x(t)
o(xz,&) =ag— / (righthand side) dt where t = / Nij da
0

(:B(t),f — t) xo

@ Construct o; using the method of successive approximations: define {7;(z,¢)} by

3 3
T0 1= ag , T = —/ (O{O + alTo) dt T = —/ (CL1’7'1 + ag * TO) dt ,
0 0
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To construct the analytic continuation o;, argue as follows.
@ Simplify by linearising the Riccati equation around \;:

Lets=\+S = hdyS+ (N —\))S =hAg+hAS - S?

@® Apply the Borel transform:

Leto =B[S] = 0,0+ (\i—\j)do=ap+a10+ o %0 — 850*2
t

. . . L (%o
© Rewrite as an integral equation: ﬁﬂ\%t )

3 Xo x(t)
o(xz,&) =ag— / (righthand side) dt where t = / Nij da
0

(:B(t),f — t) xo

@ Construct o; using the method of successive approximations: define {7;(z,¢)} by

3 3
T0 1= ag , T = —/ (O{O + alTo) dt T = —/ (CL1’7'1 + ag * TO) dt ,
0 0

® Lemma: o;(x,€) := > 71(x,&) is uniformly convergent for all £ € R, of

exponential type, and o; is its Taylor series at £ = 0 O



§3.2. Proof Outline (n > 3) | skip!

Focus on the equation (7d,)" s +s"+...=0 (#) and argue as follows.
@ Rewrite as a nonlinear system: put y; = s, y2 = hd,y,..., and consider

hoyy = F(Jr,h,y)

Example (BNR): (R302 + 3h0, + 2ix)h =0
~ B20%s + 3shOys + 83 + 35 + 2ix = 0

2
Y1 Yr — Y2
ho, || = Flz,y) = — .
- {w] (z,9) [?le2 + 3y + 223:}

~  leading-order solution y” = B‘é]

oF

~ leading-order Jacobian at y\" is J; = — B
Y

2N 1
y=y© - )\12 +3 N

~ J; is diagonalisable to A; := [/\i A ]
Ai — Ak

@ Linearise around the leading-order solution y|” and apply a gauge transformation G
to diagonalise the Jacobian J;:

at least quadratic
in horS



§3.2. Proof Outline (n > 3) | skip!

© Apply the Borel transform:
Leto =B[S] = 00+ Ndo=ag+aoc+ar*xo+---

O Rewrite as a system of integral equations: j =1,...,n— 1

I, &) =d 5( hthand side) h =0
ol(x,&) =a —/ righthan sie‘ . dt where t:/ Aijdz
0 0 (wj(t)vgft) x /

0

_t r—L;\ (%)

@ Construct o; using the method of successive approximations: define {7;(z,¢)} by

3 £
T0 = ag , T = —/ (ao + CL17’0) dt Ty 1= —/ (a17'1 + aq * 7'0) dt
0 0
o0
® Lemma 1: 04(x,¢) := Y 7i(z,§) is uniformly convergent near £ = 0, and o; is its
k=0

Taylor series at £ = 0



§3.2. Proof Outline (n > 3) | skip!

@ To analytically continue o to all £ € R, carefully examine cross-terms starting in 7o:

13
Ty 1= —/ ( aim + o * 7'0> dt
0 \v/

1

j T € et
a; T+ . T a1y ~ / / T((xa(t))k(u),g —t— u) dudt
: 0o Jo

©® Lemma 2: thanks to the assumption that the (complete) WKB flow is nonsingular,
o(x, &) admits analytic continuation to £ € R, of exponential type O
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o
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The Geometric WKB Problem

® GIVEN: (£,V) an oper: 0 &' & g’ 0
FIND: a V-invariant splitting W : £” — &.

The Geometric WKB Method

@ Fix a reference pair (Wy, Vo) where
* Wy :&" — & any reference splitting, so £ =~ &' ¢ £}
® Vo=V’ @& V" any block-diagonal connection on &' @ £”.

® Write W : £ — £ @ £ as S @ id and solve for S by searching for a unipotent gauge

transformation
id id §1 ¢ &
1 1
[0 W} = { : d] B / O
5// (c/’//

P21 P22

@ Then W is a V-invariant splitting < S satisfies the geometric Riccati equation:

© Write V=V, —¢ where ¢:[¢11 ¢12]

ady, S — 0115 + S¢21S — P12 + Spaa =0

Its exact solutions yield exact WKB flat sections for (£, V)
Remark: — Se¢ Exty (E", ") —%  cohomological WKB method?
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Geometric Point of View:
® GIVEN: (&,V) oper:

0 =& —&—=E& —0
FIND: V-invariant splitting W : £” — &
@ Fix reference pair (W, Vo)

. . o — -
id id S
® Search for {0 W]_[ id] ;9///;9”

P21 P22
O ady, S — ¢115 + SP215 — p12 + S22 = 0

© Write V=V, —¢ where gb:[ﬁbll ¢12]

xT

Schrodinger equation = 2-nd order h-differential operator on £ := wy
Equivalently, i-connection V on the 1-jet bundle £ := J'L

Oper structure = jet sequence:
Reference splitting W is given by choice of coordinate = because

1/2
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Invariant Formulation

Geometric Point of View:
® GIVEN: (&,V) oper:

0 =& —&—=E& —0
FIND: V-invariant splitting W : £” — &
@ Fix reference pair (W, Vo)

. . o —
id id S
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g// 5//
: _ 011 912
©® Write V=Vy—¢ where ¢=
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0O ady, S — ¢115 + SP215 — 12 + S22 = 0

Schrodinger equation = 2-nd order h-differential operator on £ := wy

1/2

Equivalently, i-connection V on the 1-jet bundle £ := J'L
Oper structure = jet sequence: 0 — wx®L £ L 0
Reference splitting W is given by choice of coordinate = because

&= <d:U ® dx_1/2> @ <daj_1/2> =&aqf" and S = s(x,h)dz

xT

Reference connection Vo = hd, then V = hd — [
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e Riccati equation: 1h0,s + s>+ ¢ =0
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