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§0. What is this mini-course about?

divergent series and their analytic meaning
How can we promote formal data to analytic data in a natural way?

Brief Plan for the Course:

1 Best example: resurgence of the Euler series

2 Algebras of functions and sectorial neighbourhoods

3 Asymptotic expansions

4 Asymptotic expansions with factorial growth

5 The Borel-Laplace transform

6 Borel resummation

7 The Stokes phenomenon and resurgent series

← SCAN FOR LECTURE NOTES

alternatively: My Website→ Notes



§1. Resurgence of the Euler Series

• Problem: find all solutions on the real line of the following ODE

x2f ′ + f = x . (⋆)

• Aside: actually easy to solve using the integrating factor method:

f(x) = Ce1/x + e1/x
∫ x

0

e−1/u

u
du for x > 0, C = const .

• But let’s pretend we don’t know this, and use the power series method:

power series ansatz f̂(x) :=

∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + · · ·

substitute into (⋆) to get a recursion:

a0 = 0, a1 = 1, and ak+1 = −kak i.e. ak+1 = (−1)kk! for k ⩾ 1

• Obtain a power series solution called the Euler series:

Êu(x) :=

∞∑
k=0

(−1)kk!xk+1 = x− x2 + 2x3 − 6x4 + 24x5 − 120x6 + · · · .
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§1. Resurgence of the Euler Series

• Problem: find all solutions on the real line of the following ODE

x2f ′ + f = x . (⋆)

• Answer: the Euler series

Êu(x) :=

∞∑
k=0

(−1)kk!xk+1 = x− x2 + 2x3 − 6x4 + 24x5 − 120x6 + · · · .

∗ ∗ ∗
• Curious historical aside: why “Euler series”? Clipping from his 1760 paper in Novi

Commentarii academiae scientiarum Petropolitanae:



§1. Resurgence of the Euler Series

• Problem: find all solutions on the real line of the following ODE

x2f ′ + f = x . (⋆)
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Êu(x) :=
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• This answer is exceptionally simple and beautiful, but comes with two major setbacks:

1 Êu(x) is divergent and therefore not a true solution!
2 Êu(x) is at best only a particular solution,

so the power series method has missed most solutions to our ODE!



§1. Resurgence of the Euler Series

• Key observation: if x > 0, then x =

∫ ∞

0
e−t/x dt

and k!xk+1 =

∫ ∞

0
tke−t/x dt

• Illegal trick: plug this into the Euler series to get

Êu(x) =

∞∑
k=0

(−1)kk!xk+1

=

∞∑
k=0

(−1)k
∫ ∞

0
tke−t/x dt

“=”
∫ ∞

0

( ∞∑
k=0

(−1)ktk
)
e−t/x dt

“=”
∫ ∞

0

e−t/x

1 + t
dt =: Eu(x)...t

his is bad maths!..
.

• But: Eu(x) is a perfectly well-defined analytic function for x > 0. Moreover:

x2 Eu′(x) + Eu(x) = x and Eu(x) ≃ Êu(x) as x→ 0+

In fact: Eu(x) = e1/x
∫ x

0

e−1/u

u
du is the particular solution we encountered before!

Borel resummation legalises this trick!
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§1. Resurgence of the Euler Series

Êu(x) =
∞∑
k=0

(−1)kk!xk+1 “=”
∫ ∞

0

( ∞∑
k=0

(−1)ktk
)
e−t/x dt “=”

∫ ∞

0

e−t/x

1 + t
dt = Eu(x)

Borel Resummation:

1 Borel transform: Êu(x)
B7−−→ êu(t) :=

∞∑
k=0

(−1)ktk

f̂(x) =

∞∑
k=0

akx
k B7−−−→

∞∑
k=0

ak+1

k!
tk = φ̂(x)

2 analytic continuation to all t ∈ R+: êu(t) ⇝ eu(t) :=
1

1 + t

3 Laplace transform: eu(t)
L7−−−→ Eu(x) =

∫ ∞

0
e−t/x eu(t) dt

φ(t)
L7−−−→

∫ ∞

0
φ(t)e−t/x dt

The Borel sum of f̂(x) is

f(x) = Σ
(
f̂(x)

)
:= a0 + L

[
φ(t)

]
= a0 + L ◦AnCont ◦B

[
f̂(x)

]
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§1. Resurgence of the Euler Series

Wallis Hypergeometric Series

Question: What is the ‘value’ of

Êu(1) = 1− 1! + 2!− 3! + 4!− 5! + · · · = 1− 1 + 2− 6 + 24− 120 + · · · ?

Answer: since Eu(x) is the Borel resummation of Êu(x) for x > 0, get

Σ
(
Êu(1)

)
= Eu(1) =

∫ ∞

0

e−t

1 + t
dt ≈ 0.596347362323194... .
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§1. Resurgence of the Euler Series

What about x < 0?

Eu(x) =

∫ ∞

0

e−t/x

1 + t
dt

has an obvious problem for x < 0: integrand is exponentially growing as t→ +∞

expand our worldview: from now on, x is a complex variable



§1. Resurgence of the Euler Series

• L[t](x) =

∫
R+

te−t/x dt is well-defined for all x ∈ H+ :=
{
Re(x) > 0

}

ξ

R+

x

H+

• Lθ[t](x) :=

∫
Rθ

te−t/x dt is well-defined for all x ∈ Hθ :=
{
Re(e−iθx) > 0

}

ξ Rθ
x

Hθ

• LA[t](x) :=
{
Lθ[t](x)

}
θ∈A

assembles into a holomorphic function on
⋃
θ∈A

Hθ

A = (α−, α+) = arc of directions

ξ

R+

Rθ
x
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§1. Resurgence of the Euler Series

Get a particular holomorphic solution for all x ∈ C \ R−:

Eu(x) :=

∫
Γx

e−t/x

1 + t
dt ξ

Γx = Rarg(x)

−1

Consider: Eu±(x) :=
∫
Γ±

e−t/x

1 + t
dt

Stokes Phenomenon: they are not the same!

ξ
Γx = Rarg(x)

−1 Γ−

Γ+

Eu+(x)− Eu−(x) =

∮
t=−1

e−t/x

1 + t
dt = 2πi Res

t=−1

(
e−t/x

1 + t
dt

)
= 2πie1/x

So the missing solutions have resurged as residues of the Borel transform!

The general solution is the multivalued holomorphic function on C \ {0}:

f(x) = Eu(x) + Ce1/x = Eu(x) + C2πi Res
t=−1

(
e−t/x eu(t) dt

)
C ∈ C
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