A graduate course in analytical mechanics, covering the essential equations and their applications, to prepare for later courses in electrodynamics and quantum physics. This course assumes undergraduate level knowledge of mechanics and a firm grasp of calculus and vector mathematics. An understanding of static electromagnetic fields is extended through Maxwell’s equations to a discussion of dynamic vector fields and electromagnetic waves. Along the way, numerous physical and technical applications of these equations are used to illustrate the concepts, including dielectrics and conductors, wave guides, and microwave engineering. Special relativity is introduced with discussion of relativistic and non-relativistic motion and radiation, using linear accelerators and synchrotron radiation as illustrative applications.

- Charge and Gauss's Law
- Current and Ampere's Law
- Divergence and Rotation
- Induction
- Capacitance and Inductance
- Maxwell's Equation 1
- Maxwell's Equation 2
- Vector and Scalar Potentials
- Electromagnetic Waves
- Energy, Dispersion
- Impedance Concept
- Reflection and Matching Condition
- Relativistic Equation of Motion
- Radiation from a Moving Charge
- Synchrotron Radiation