Course Coordinator: 
Fujie Tanaka
Bioorganic Chemistry

This course covers essential concepts and recent advances in the design and synthesis of functional molecules used for understanding and controlling biological systems.  Topics of this course include design and synthesis of small organic molecules, organic reactions, methods for controlling reaction pathways, asymmetric synthesis, mechanisms of catalysis and molecular recognition, and creation of designer proteins and peptides.

To discuss design and synthesis of functional molecules used for understanding and controlling biological systems.
Course Content: 
  1. Methods of chemical transformations to access designer molecules
  2. Strategies for the development of new reaction methods including stereoselective reaction methods
  3. Asymmetric reactions and asymmetric catalysis
  4. Catalytic enantioselective reactions: Carbon-carbon bond forming reactions
  5. Catalytic enantioselective reactions: hydrolysis, reduction, dynamic kinetic resolutions, etc.
  6. Organocatalysis
  7. Design and synthesis of functional molecules
  8. Chemical mechanisms of bioactive molecules including chemistry of enzyme inhibitors
  9. Molecular recognition and non-covalent bond interactions
  10. Enzyme catalysis and catalytic mechanisms
  11. Enzyme catalysis and small organic molecule catalysis
  12. Enzyme kinetics and kinetics of non-enzymatic reactions
  13. Strategies for the development of new designer catalysts
  14. Methods in identification and characterization of organic molecules
  15. Chemical reactions for protein labeling; chemical reactions in the presence of biomolecules
Course Type: 
Exercises 50%, reports 50%
Text Book: 
Strategic Applications of Named Reactions in Organic Synthesis, Kurti and Czako (2005)
Reference Book: 
Advanced Organic Chemistry, Part B: Reactions and Synthesis, Carey and Sundberg (2007)
Advanced Organic Chemistry, Part A Structures and Mechanisms, Carey and Sundberg (2007)
Organic Chemistry, McMurry